IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014 1

Improving Retrieval Efficacy of Homology
Searches using the False Discovery Rate

Hyrum D. Carroll, Alex C. Williams, Anthony G. Davis, and John L. Spouge

Abstract—Over the past few decades, discovery based on sequence homology has become a widely accepted practice. Consequently,
comparative accuracy of retrieval algorithms (e.g., BLAST) has been rigorously studied for improvement. Unlike most components of
retrieval algorithms, the E-value threshold criterion has yet to be thoroughly investigated. An investigation of the threshold is important
as it exclusively dictates which sequences are declared relevant and irrelevant. In this paper, we introduce the false discovery rate (FDR)
statistic as a replacement for the uniform threshold criterion in order to improve efficacy in retrieval systems. Using NCBI's BLAST and
PSI-BLAST software packages, we demonstrate the applicability of such a replacement in both non-iterative (BLAST rp) and iterative
(PSI-BLAST rp r) homology searches. For each application, we performed an evaluation of retrieval efficacy with five different multiple
testing methods on a large training database. For each algorithm, we choose the best performing method, Benjamini-Hochberg, as the
default statistic. As measured by the Threshold Average Precision, BLAST ¢ p r yielded 14.1% better retrieval performance than BLAST
on a large (5,161 queries) test database and PSI-BLAST - p i attained 11.8% better retrieval performance than PSI-BLAST. The C++
source code specific to BLAST pp g and PSI-BLAST rp r and instructions are available at http://www.cs.mtsu.edu/~hcarroll/blast_fdr/.

Index Terms—Homology search, false discovery rate, retrieval efficacy, uniform E-value thresholding

1 INTRODUCTION

In response to a query, many database search algorithms
(e.g., BLAST and PSI-BLAST [1]) return a retrieval list
of sequences sorted by the E-values assigned to each
sequence. Typically, each E-value is calculated from a
statistical model of irrelevant (“false positive”) database
sequences and approximates the expected number of
irrelevant sequences with a score equal to or better
than the one calculated. Many algorithms truncate their
retrieval lists at a uniform E-value threshold. We call this
truncation procedure “uniform E-value thresholding”.
While many different aspects of BLAST have undergone
rigorous examination, uniform E-value thresholding has
not had the same scrutiny.

This article studies thresholding procedures in two
programs for protein sequence retrieval: BLAST and PSI-
BLAST. BLAST accepts a sequence as a query to search
for relevant (“true positive”) matches in a specified
database. Additionally, an E-value threshold may be
supplied to BLAST. BLAST looks for all relevant matches
between that query and the sequences in a database and
then applies uniform E-value thresholding by ignoring
all matches with an E-value above the specified value.

PSI-BLAST is an iterative version of BLAST, which
takes a single protein sequence query and database as

e H.D. Carroll, A.C. Williams and A.G. Davis are with the Department
of Computer Science, Middle Tennessee State University, Murfreesboro,
TN, 37128.

E-mail: Hyrum.Carroll@mtsu.edu,
agd2q@mtmail.mtsu.edu

e J.L. Spouge is at the National Center for Biotechnology Information,
Bethesda, MD 20894.

acwda@mtmail . mtsu.edu,

inputs. Its first iteration is the same as a BLAST search.
At the end of that iteration and each subsequent one, it
performs uniform E-value thresholding on the retrieval
list (at a stringent default E-value threshold of 0.002).
Furthermore, it aligns the truncated list against the orig-
inal query, and generates a position-specific scoring ma-
trix (PSSM) from the alignment to search the database in
the next iteration. The default E-value threshold for entry
into the PSI-BLAST alignment is stringent, to prevent
an excess of irrelevant sequences (“false positives”) from
overwhelming the query sequence and “corrupting” the
search [2].

As computing potential and the sophistication of com-
puter algorithms increase, so has the need to account
for multiple testing. For both non-iterative and iterative
homology searches, the query is compared against each
sequence in the database independently, resulting in
multiple tests. Performing multiple tests can give the
perception of a more significant result than the data can
support. False discovery rate (FDR) methods aim to con-
trol the proportion of irrelevant matches to address the
issues introduced by multiple testing. They are widely
used in microarray studies and virtually in all facets of
genomic studies. Unfortunately, few have adopted their
use for sequence analysis. A recent exception to this is
the use of a FDR approach to aid in generating the DFam
database [3].

Early efforts for managing the false positive rate aimed
to control the Family-wise Error Rate (FWER), the like-
lihood of making one or more false discoveries. Due
to the intrinsic nature of how the FWER is computed,
FWER methods also provide control over the FDR. Four
modern and traditionally-accepted FWER methods are

http://www.cs.mtsu.edu/~hcarroll/blast_fdr/

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014 2

the Bonferroni correction [4], the Holm step-up proce-
dure [5], the Hochberg step-down procedure [6], and
the Hommel single-wise procedure [7]. The Bonferroni
correction uses a uniform P-value threshold determined
by a user-specified « (or P-value threshold) divided by
the total number of performed tests. The Holm step-up
procedure extends the Bonferroni correction by adding
the rank of the ordered P-values to the total number
of performed tests in the thresholding method. Like
the Holm procedure, the Hochberg step-down process
utilizes the rank in the thresholding method by looking
for the P-value that is less than a user-specified a divided
by the total number of performed tests in addition to
the current P-value’s rank. The Hommel single-wise
procedure is similar in that it looks for the P-value
for which all P-values with a higher rank are greater
than a number proportional to «. In comparison with
FWER methods, procedures designed to control only
the FDR, such as the Benjamini-Hochberg step-up proce-
dure [8], offer a less conservative form of measurement
in exchange for greater control over the number of rele-
vant and irrelevant sequences. The Benjamini-Hochberg
method computes a threshold by multiplying the current
P-value’s rank by a user-specified o and dividing the
result by the total number of performed tests.

In this paper, we explore the retrieval efficacy (how
well a method identifies relevant records) of two appli-
cations: BLASTrpr and PSI-BLAST rpg, each of which
is a BLAST variant that uses E-values to calculate the
FDR. We demonstrate that both applications perform
better than their predecessors (BLAST and PSI-BLAST),
in part by drastically decreasing the number of irrelevant
sequences. The Methods section presents the implemen-
tation details of each application; the Results section
describes our testing procedures and their results. We
conclude with a discussion of BLASTrpr and PSI-
BLASTrpr’s applicability. The C++ source code spe-
cific to BLAST rpgr and PSI-BLAST rpg, instructions and
supplementary material are available at http://www.cs.
mtsu.edu/~hcarroll/blast_fdr/.

2 METHODS

BLASTrpr extends version 2.2.27 of NCBI's BLAST
algorithm by replacing uniform E-value threshold-
ing with one of the following algorithms: Bonferroni,
Holm’s step-down process, Hochberg’s step-down pro-
cess, Hommel'’s single-wise process, and Benjamini and
Hochberg’s method. The Bonferroni method calculates
a threshold value for each sequence retrieved and con-
siders the first k ranked sequences as significant that
satisfy the following criterion: P, < %, where Py is
the P-value of the k' sequence and m is the size of
the database searched. Because BLAST relies heavily on
E-values instead of P-values, and given that E-value
= P-value * m [9], we implemented the Bonferroni
method as: £, < o with Ej being the E-value of the
k*" sequence. Furthermore, the Holm method considers

matches significant that meet the following criterion:
E, < M_T%k Similarly, the Hochberg method takes a
different approach by starting at the least likely match
and working toward the best statistical score to consider
the following matches as significant: Ej, < 4. The
Hommel method also iterates from the least significant
match to find the index %k such that: E,, py; > ¢
for j = 1,...,k, then uses k to consider the following
matches significant: F; < . Finally, the Benjamini-
Hochberg method iterates from the match with the best
statistical score and uses the following criterion for
significant matches: Ej, < ka.

Each match in BLAST is called a high scoring pair
(HSP). A database sequence can have multiple HSPs.
BLAST organizes all of the HSPs according to the
database sequence to which they belong and maintains
its internal data structures sorted by the best HSP per
database sequence. This is problematic for applying
the methods above. Consequently, BLASTrpr and PSI-
BLASTppr restructure the HSPs from being sorted by
sequence to being sorted by individual scores before
applying the threshold. The new list stores pointers to
the original data structures, minimizing the amount of
memory required.

To determine retrieval efficacy for BLAST ppr and PSI-
BLASTrpr, we leveraged the query sequences in the
ASTRAL40 database [10]. Each sequence in the ASTRAL40
database has less than 40% sequence identity to the other
sequences. More importantly, each sequence has been
classified into a “superfamily”. We only considered the
queries that have at least one other superfamily member
in the database. Matches with the sequences in the same
superfamily are considered relevant matches. To avoid
making erroneous assignments, we ignore matches that
are not in the same superfamily as the query sequence.
For irrelevant matches, we augmented this database 100-
fold with random sequences drawn from the distribution
of amino acids residues and length of sequences found
in the original ASTRAL40 database. We partitioned the
augmented database into Training and Test databases.
We sorted the queries by name, and assigned the 5,162
sequences with an odd rank to the Training database
and the 5,161 sequences with an even rank to the Test
database [11]. Additionally, we randomly selected 103
queries (2%) from the training dataset to use to eval-
uate which method to use. We refer to this subset as
“Training-subset”.

For PSI-BLAST and PSI-BLAST rpr, each query is first
searched against a large non-redundant database. For
this study, we clustered NCBI's NR database to 90%
sequence identity (NR90) by selecting a representative
sequence for each cluster with nrdb90 [12]. After at most
five iterations of searching on the NR90 database, the re-
sulting PSSM was used to search against the augmented
ASTRAL40 databases.

Traditionally, the Receiver Operating Characteristic
(ROC,,) method [13] has served as an evaluation crite-
rion for retrieval efficacy. The ROC,, method ignores the

http://www.cs.mtsu.edu/~hcarroll/blast_fdr/
http://www.cs.mtsu.edu/~hcarroll/blast_fdr/

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014 3

threshold implied by a homology search algorithm and
truncates a list of matches after the n'” irrelevant match.
The resulting list of matches is plotted with the number
of irrelevant matches on the x-axis and the proportion
of relevant matches on the y-axis. A ROC,, score is
then the normalized area under the curve. Typically,
n = 50. The ROC,, method was not suitable for this
study as it generally requires the threshold imposed
by the algorithm to be artificially modified to allow
for n irrelevant matches, thus erasing the effect of the
threshold method.

In this study, we utilize the Threshold Average Pre-
cision (TAP) [14] method as the evaluation criterion for
retrieval efficacy. The TAP method calculates the median
Average Precision-Recall with a moderate adjustment
for irrelevant sequences just before the threshold. TAP
values range from 0.0 for a retrieval with no relevant
sequences to 1.0 for a search that retrieves all of the
relevant sequences and only relevant sequences.

Here, we use a slightly simplified calculation of the
TAP value because each program uses its own retrieval
threshold. We calculate TAP values according to equa-
tion [T}

T(q)+1

J
IOESS p(m>] (1)
m=1

where ¢ is a query, T(q) is the total number of relevant
records for query ¢, p(x) is the precision at record z, and
j is the last record retrieved.

We choose the TAP measure because it fulfills the
conditions for an ideal measure of retrieval efficacy
proposed by Swets [15] and Wilbur [16]:

1) It should concern itself solely with the effectiveness
of separating the relevant from the non-relevant
[records] and not with the efficiency of resource
use.

2’) It should be characterized by a [user] threshold, but
should reflect the quality of retrieval at every rank
down to that threshold.

3) It should be a single number.

4) It should have absolute significance as a measure
of a single method and should readily allow com-
parisons of different methods to decide which is
best.

Other retrieval measures, such as the tuple of precision
and recall, fail to met the criterion of using a single
number. While the average precision is a single number,
it fails the second criterion in that irrelevant records at
the very end of the retrieval do not affect the score.

To determine the best performing threshold method
to use, we examined the retrieval performance for each
one of them with o« = {0.0005, 0.005, 0.05, 0.5} using
the Training-subset database. From these methods, we
adopted the best performing one as the default threshold
method in BLASTrpr and PSI-BLASTrpr. We then
evaluated that method with a = {0.0005, 0.005, 0.05,0.5}
using the entire Training database. Finally, the best per-
forming method with the best performing value of a was

TABLE 1
Average BLAST rpr TAP values using the
Training-subset database

Method 0.0005 0.005 0.05 0.5
Bonferroni 0163 0.170 0.198 0.199
Holm 0.163 0.170 0.198 0.199
Hochberg 0.081 0.088 0.102 0.150
Hommel 0163 0170 0.198 0.199
Benjamini-Hochberg ~ 0.168 0.180 0.203 0.184
TABLE 2
Average BLAST zpr TAP values using the Training
database
«
Method 0.0005 0.005 0.05 0.5
Benjamini-Hochberg ~ 0.199 0.215 0.229 0.220

compared against BLAST and PSI-BLAST using the Test
database.

3 RESULTS

To evaluate the performance of BLASTrpr and PSI-
BLASTrpr, we performed several experiments involv-
ing five different threshold methods to account for
multiple testing. We utilized an augmented version of
the ASTRAL40 database (see the Methods section). We
measured the performance in terms of the Threshold
Average Precision (TAP) value.

First, we evaluated BLASTppr with the following
methods for determining the threshold for matches: Bon-
ferroni correction, Holm step-up procedure, Hochberg
step-down procedure, Hommel single-wise procedure
and Benjamini-Hochberg. For each method, we set a =
{0.0005,0.005,0.05,0.5} on the Training-subset database
(see Table [I). Of these methods, BLASTrpp with the
Benjamini-Hochberg method received the best average
TAP value of 0203 and generally performed better
than the other methods. Consequently, we adopted this
method as the default for BLASTrppr. For comparison
purposes, BLAST received an average TAP value of 0.171
on the same database using the default E-value threshold
of 10.

On the (full) Training database, we evaluated the
same four a values for BLASTppr using the Benjamini-
Hochberg method (see Table . Of these parameters,
BLASTrpr with o = 0.05 received the best average TAP
of 0.229 while BLAST received 0.203. Consequently, we
adopted this « level as the default for BLAST ppr.

We evaluated the efficacy of BLAST and BLASTrpr
using the 5,161 query sequences in the Test database.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014

1 P
v g
. +E s+ T
- N ﬂ%
+ e F +
- " L+ "
++ H+ +
4
b,
0.8 - + A L
F
+H o+ o+
+ +
ETRHPTERI U L G +
o+ 4t
+ o+
e F R o+
o4+ +
P a +
#HHHH—O—F#+#+++++HH—H++W—F$+&+H+F++++ +
4+ + 4
e+
A T+
A+
[a N 0.6 -+ + H o+ o+ Tt + +
< EE
o+ +#+ﬂt$ﬁj+ﬁ++
= o+ e Y
+
o H# + ‘m’i+ﬁ+$ ++ +
[a) + -
I B I IR R IRty QﬁﬁJr ++ + + o+ +
[Tt +
&) SRR o
< Wﬁ R A L +
3 L +
AT
m ++++Eﬁ+ . F *
&R e
4
o T+
i + +
+ 5 4
#}E + + +
+
+
L+
+ +
4
R R [R R .

Fig. 1. TAP results for every query in the Test database for BLAST and BLASTrpr

TABLE 3 100000

Average TAP values for BLAST and BLASTrpgr

10000
2
Database BLAST BLASTrpr “Ia 1000
Training-subset ~ 0.171 0.203 2 100
Training 0.203 0.229 E
Test 0.198 0.226 z 10
1
o o N~ (o] [To] < -
S S5 9 oS8 g
Table B summarizes the results and Figure [I] details the 433338330 o a9
E-value

TAP values for BLAST plotted against the TAP values
for BLASTrpr for each of the queries. While BLAST re-
ceived an average TAP value of 0.198, BLAST pp earned
an average TAP value of 0.226. In terms of irrelevant
sequences, BLAST ppp retrieves an average of only 0.27
irrelevant sequences per query whereas BLAST retrieves
2,780% more with 7.44 per query. For every dataset
in the Test database, the retrieval list for BLASTrpr
was shorter than the respective list for BLAST. This is
noticeable in Figure |1 as “lines” for BLASTppr TAP
values. For BLAST, it retrieves more, and in particular a

Fig. 2. Histogram of the E-values of sequences in the
Test database retrieved by BLAST but not by BLAST ppr

more varied number of irrelevant sequences (typically at
the end of the retrieval), resulting in a wider distribution
of TAP values. Finally, Figure [2|is a histogram of the E-
values of sequences retrieved by BLAST that were not
retrieved by BLASTppr.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014

0.6
0.5
0.4
0.3
0.2
0.1} 8

0 I I I I
0 50 100 150 200

Maximum Superfamily Size

Cumulative TAP

250

Fig. 3. Cumulative BLASTrpr TAP and BLAST TAP
versus aggregate superfamily size for the Test database

TABLE 4
Average TAP values for BLAST using the Test database

E-value Threshold
0.001 0.01 0.1 1 10

le-5 le-4

BLAST 0.170 0.184 0.198 0210 0.223 0223 0.198

Furthermore, BLASTrpr performs notably better on
datasets that belong to small superfamilies. Figure
illustrates this with the cumulative average TAP for both
BLASTrpr and BLAST for ascending superfamily sizes.
For example, for superfamilies with a size of twelve
or fewer members, BLASTrpr has a TAP of 0.421 and
BLAST a TAP of 0.332.

We also evaluated the retrieval performance of BLAST
using the Test database for the following E-value thresh-
olds: 1e-5, 1le-4, 0.001, 0.01, 0.1, 1 and 10 (the default).
Table {4] reports the average TAP value for each of these
thresholds. BLAST performed the best with an E-value
threshold of 0.1 with an average TAP value of 0.223.

We also evaluated PSI-BLASTrpgr in the same man-
ner as above using the Training-subset database by
using the same five methods and the same values of
o (see Table [5). Iterating on the NR90 database first
and then searching on the ASTRAL40 database noticeably
increases the TAP value for each algorithm. Again we
observe that Bonferroni, Holm and Hommel reported
identical values due to their similar algorithms. The
ordering of the methods is the same as with BLASTrpr,
consequently, we again adopted the Benjamini-Hochberg
method as the default for PSI-BLASTrpr and set the
default for the o parameter to 0.05 as well. With these
parameters, PSI-BLAST rpr has a TAP value of 0.332. For
comparison, PSI-BLAST received a TAP value of 0.296 on
the same databases using the default E-value thresholds.

We also evaluated the efficacy of PSI-BLAST and PSI-
BLASTrpr using the Training database (5,162 query
sequences) and Test database (5,161 query sequences)

TABLE 5
Average PSI-BLAST rpr TAP values using the
Training-subset database

Method 0.0005 0.005 0.05 0.5

Bonferroni 0.302 0.319 0327 0.323

Holm 0302 0319 0327 0.323

Hochberg 0215 0225 0257 0.318

Hommel 0.302 0.319 0327 0.323

Benjamini-Hochberg ~ 0.309 0.329 0.332 0.303
TABLE 6

Average TAP values for PSI-BLAST and PSI-BLAST rpr

Database PSI-BLAST PSI-BLASTgpgr
Training-subset 0.296 0.329
Training 0.346 0.385
Test 0.338 0.378
100000
10000 ¢
}4]
£
5 1000 +
g
= 100 +
=
10 +
1 \ \ \ \ \ \ \
o O N~ © W S o
@ Q Q Q< 9 9o d
v » 0o 0o o o 2 <2 o o
— — — — — — o o o — —
E-value

Fig. 5. Histogram of the E-values of sequences in the
Test database retrieved by PSI-BLAST but not by PSI-
BLASTrpr

(see Table [6). While PSI-BLAST received an average TAP
value of 0.346 on the Training database, PSI-BLASTrpr
earned an average TAP value of 0.385. Additionally, for
the Test database, PSI-BLAST received an average TAP
of 0.338 and PSI-BLASTppr and average TAP value of
0.378. Furthermore, to visualize the results of each query
in the Test database, each TAP value for PSI-BLAST
is plotted against the respective PSI-BLASTrpr TAP
value in Figure 4] In terms of irrelevant sequences, PSI-
BLASTppr retrieves an average of only 1.07 irrelevant
sequences per query whereas PSI-BLAST retrieves 12.62
per query (1183% more). Finally, Figure 5 is a histogram
of the E-values of sequences retrieved by PSI-BLAST that
were not retrieved by PSI-BLAST ppr. For every dataset
in the Test database, the retrieval list for PSI-BLAST rpr
was shorter than the respective list for PSI-BLAST.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014

o

<

|_

[0

[a]

[

|_

%))

<

-

@

n

2l

0 0.2 0.4 0.6 0.8 1
PSI-BLAST TAP
Fig. 4. TAP results for every query in the Test database for PSI-BLAST and PSI-BLAST ppr
1 TABLE 7
0.9 ‘ Average TAP values for PSI-BLAST using the Test

o 08 database

< 07

© 06

E 82 E-value Threshold

£ 03 le5 le4 0001 001 01 1 10
>

© 8% PSI-BLAST 0320 0332 0346 0358 0371 0363 0.338

0
0 50 100 150 200 250

Maximum Superfamily Size

Fig. 6. Cumulative PSI-BLASTrpg TAP and PSI-BLAST
TAP versus aggregate superfamily size for the Test
database. PSI-BLASTrpr is the solid line and PSI-
BLAST the dashed line

As with BLASTrppr and BLAST, PSI-BLASTppr per-
forms notably better than PSI-BLAST on datasets that be-
long to small superfamilies. Figure [p|illustrates this with

the cumulative average TAP for both PSI-BLASTrpr
and PSI-BLAST for ascending superfamily sizes. For the
iterative methods, the results vary greatly per superfam-
ily size for medium and large sized superfamilies.

Finally, we evaluated the effects of truncating the
retrieval of PSI-BLAST using the Test database for the
following E-value thresholds: 1e-5, 1le-4, 0.001, 0.01, 0.1,
1 and 10 (the default). Table [7] reports the average TAP
value for each of these thresholds. PSI-BLAST performed
the best truncating the E-value threshold at 0.1 with an
average TAP value of 0.371.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014 7

4 DISCUSSION

In this article we discussed an observed deficiency in the
control of the proportion of irrelevant records in retrieval
algorithms. Including too many irrelevant sequences has
been shown to corrupt searches in a genetic database
search algorithm [2]. For iterative algorithms like PSI-
BLAST, this corruption is propagated and magnified
with each iteration. To address this issue, we propose
BLASTrpr and PSI-BLASTrpgr, each of which is an
implementation of their predecessor that exercises a
false discovery rate method, for finer control over the
percentage of irrelevant sequences.

To establish default parameters for BLASTrpr and
PSI-BLASTrpr, we evaluated the following threshold-
ing methods: Bonferroni correction, Holm step-up pro-
cedure, Hochberg step-down procedure, the Hommel
single-wise procedure and Benjamini-Hochberg step-up
procedure with o = {0.0005, 0.005, 0.05, 0.5} for each
method. The Benjamini-Hochberg method with o = 0.05
performed the best. Interestingly, only the Benjamini-
Hochberg method stops improving with relaxed restric-
tions (see Table [1), suggesting that the FDR provides an
appropriate retrieval cut-off.

Using accepted evaluation procedures, BLASTrpr
and PSI-BLASTrpr performed better than BLAST and
PSI-BLAST respectively. For the ASTRAL40 Test datasets,
BLASTrpr had an average TAP value that was 14.1%
higher than BLAST and PSI-BLASTrpr had an aver-
age TAP value that was 11.2% better than PSI-BLAST.
These differences are notable given the extremely wide
use that BLAST and PSI-BLAST enjoy. Furthermore,
BLASTppr is particularly appropriate for queries with
small superfamily sizes as evidenced by it obtaining
an average TAP value 26.8% higher than BLAST for
superfamilies with sizes up to and including twelve.
The performance of PSI-BLASTrppr on the Test data
sets was also best for queries that belong to smaller
superfamilies. For queries in larger superfamilies, if the
goal is to assign function to a query, then adequately
identifying the superfamily is sufficient. For example,
retrieving 50% of a large superfamily clearly indicates
which superfamily the query belongs. This objective is
not currently captured in retrieval evaluation metrics
and may make evaluation values misleading for large
superfamilies.

We also afforded BLAST and PSI-BLAST with the ad-
vantage of evaluating multiple threshold parameters. We
truncated the retrieval lists for BLAST and PSI-BLAST
for E-value = {le-5, 1e-4,0.001,0.01,0.1, 1,10} (where 10
is the default) (see Tables[4and [7). For the Test database,
BLASTrpr and PSI-BLASTppgr still performed better
than BLAST and PSI-BLAST respectively at all thresh-
old levels. BLAST and PSI-BLAST both performed best
at an E-value of 0.1, but at this threshold BLAST re-
trieved 1,214 less relevant sequences than BLASTrpr
and PSI-BLAST 3,932 less relevant sequences than PSI-
BLASTrpr.

While both BLASTrpr and PSI-BLAST rpr show no-
ticeable performance improvements over BLAST and
PSI-BLAST, the increases were not seen for all queries.
For example, Figures [I| and [illustrate that there are
several datasets in the Test database that BLASTrpr
and PSI-BLASTppr receive a TAP value of 0.0 but
BLAST achieves a non-zero TAP value. Clearly some
improvements can be made to these methods to improve
their performance.

While we used BLAST and PSI-BLAST as examples
in this study, other retrieval algorithms that use uniform
thresholding could also benefit from the implementation
of a FDR controlled threshold. Furthermore, employing
more advanced false discovery rate methods, such as
the Q-value method [17] could also yield improvements.
Implementation of the Q-value, because it requires the
entire distribution of statistical scores, is inherently chal-
lenging for heuristic algorithms like BLAST and PSI-
BLAST.

REFERENCES

[1] S. E Altschul, T. L. Madden, A. A. Schiffer,]. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs,” Nucleic
Acids Research, vol. 25, no. 17, pp. 3389-3402, 1997.

[2] M. Gonzalez and W. Pearson, “Homologous over-extension: a
challenge for iterative similarity searches,” Nucleic acids research,
vol. 38, no. 7, pp- 2177-2189, 2010.

[3] T.]J. Wheeler, J. Clements, S. R. Eddy, R. Hubley, T. A. Jones,
J. Jurka, A. F. Smit, and R. D. Finn, “Dfam: a database of repetitive
DNA based on profile hidden Markov models,” Nucleic acids
research, vol. 41 (D1), pp. D70-D82, 2013.

[4] C. E. Bonferroni, Il calcolo delle assicurazioni su gruppi di teste.
Tipografia del Senato, 1935.

[5] S. Holm, “A simple sequentially rejective multiple test proce-
dure,” Scandinavian journal of statistics, pp. 65-70, 1979.

[6] Y. Hochberg, “A sharper Bonferroni procedure for multiple tests
of significance,” Biometrika, vol. 75, no. 4, pp. 800-802, 1988.

[71 G.Hommel, “A stagewise rejective multiple test procedure based
on a modified Bonferroni test,” Biometrika, vol. 75, no. 2, pp. 383—
386, 1988.

[8] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery
Rate: a Practical and Powerful Approach to Multiple Testing,”
Journal of the Royal Statistical Society, Series B, vol. 57, pp. 289-300,
1995.

[91 M. G.Kann, S. L. Sheetlin, Y. Park, S. H. Bryant, and]J. L. Spouge,
“The identification of complete domains within protein sequences
using accurate E-values for semi-global alignment,” Nucleic Acids
Research, vol. 35, no. 14, pp. 46784685, 2007.

[10] J. Chandonia, G. Hon, N. Walker, L. Lo Conte, P. Koehl, M. Levitt,
and S. Brenner, “The ASTRAL Compendium in 2004,” Nucleic
Acids Research, vol. 32, no. Database Issue, pp. D189-D192, 2004.

[11] S. Altschul, E. Gertz, R. Agarwala, A. Schiffer, and Y. Yu, “PSI-
BLAST pseudocounts and the minimum description length prin-
ciple,” Nucleic Acids Research, vol. 37, no. 3, pp. 815-824, 2009.

[12] L. Holm and C. Sander, “Removing near-neighbour redundancy
from large protein sequence collections.” Bioinformatics, vol. 14,
no. 5, pp. 423429, 1998.

[13] M. Gribskov and N. Robinson, “Use of receiver operating charac-
teristic (ROC) analysis to evaluate sequence matching,” Computers
and Chemistry, vol. 20, no. 1, pp. 25-33, 1996.

[14] H. D. Carroll, M. G. Kann, S. L. Sheetlin, and J. L. Spouge,
“Threshold Average Precision (TAP-k): A Measure of Retrieval Ef-
ficacy Designed for Bioinformatics,” Bioinformatics, vol. 26, no. 14,
pp- 1708-1713, 2010.

[15] J. A. Swets, “Effectiveness of Information Retrieval Methods,”
Bolt, Beranek, and Newman, Inc., Cambridge, MA, 1967.

[16] W.]. Wilbur, “An information measure of retrieval performance,”
Information Systems, vol. 17, no. 4, pp. 283-298, 1992.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 00, NO. 0, 2014

[17]]. Storey, “A direct approach to false discovery rates,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology), vol. 64,
no. 3, pp. 479-498, 2002.

Hyrum D. Carroll received his BSc degree in
Computer Engineering and MSc and PhD de-
grees in Computer Science from Brigham Young
University in 2002, 2004 and 2008 respectively.
He was a postdoctoral researcher at the National
Center for Biotechnology Information from 2008
to 2011. Since then he has been an Assistant
Professor at Middle Tennessee State University.
His research interests include homology search
algorithms and computational biology algorithms
that leverage next-gen sequence data.

Alex C. Williams received the BSc degree in
Computer Science from Middle Tennessee State
University. He is currently working toward the
MSc degree with Dr. Hyrum Carroll. He is a
graduate teaching assistant for the Department
of Computer Science. He is also a national mem-
ber of the ACM and chair of his local student
chapter.

Anthony G. Davis received the BSc degree
in Computer Science and is currently working
toward the MSc degree in Computer Science
from Middle Tennessee State University. He is
currently a graduate teaching assistant for the
Department of Computer Science at MTSU.

John L. Spouge received his BSc and MD
degrees from the University of British Columbia,
and his DPhil degree in Applied Probability at
Trinity College, Oxford under John Hammersley
in 1983. He was a post-doctoral fellow at Los
Alamos National Laboratory and the National
Institutes of Health before becoming a founding
member of the National Center for Biotechnol-
ogy Information in 1989. His research interests
include sequence and structure statistics, HIV,
DNA barcodes, and coalescent theory.

	Introduction
	Methods
	Results
	Discussion
	References
	Biographies
	Hyrum D. Carroll
	Alex C. Williams
	Anthony G. Davis
	John L. Spouge

